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Abstract

Variable subset selection is often mandatory in high throughput metabolomics and
proteomics. However, depending on the variable to sample ratio there is a significant
susceptibility of variable selection towards chance correlations. The evaluation of the
predictive capabilities of PLSDA models estimated by cross-validation after feature selection
provides overly optimistic results if the selection is performed on the entire set and no
external validation set is available. In this work, a simulation of the statistical null hypothesis
is proposed to test whether the discrimination capability of a PLSDA model after variable
selection estimated by cross model validation is statistically higher than that attributed to
the presence of chance correlations in the original data set. Statistical significance of PLSDA

CV-figures of merit obtained after variable selection is expressed by means of p-values
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calculated by using a permutation test that included the variable selection step. The
reliability of the approach is evaluated using two variable selection methods on
experimental and simulated data sets with and without induced class differences. The
proposed approach can be considered as a useful tool when no external validation set is
available and provides a straightforward way to evaluate differences between variable
selection methods.

KEYWORDS: metabolomics; chance correlations; variable selection; Partial Least Squares -

Discriminant Analysis (PLSDA)
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1. Introduction

Nowadays, nuclear magnetic resonance (NMR) and the hyphenation of high resolution
separation techniques (e.g. gas and liquid chromatography as well as capillary
electrophoresis) with mass spectrometry (MS) play leading roles as high throughput
analytical tools in comprehensive metabolomics and proteomics. Frequently, studies involve
the discriminant analysis of samples under two distinct experimental conditions such as
treated vs. untreated or diseased vs. control, for the identification of biomarkers or the
calculation of predictive models. This is a challenging task, as the number of detected
variables typically largely exceeds the number of samples, and variables are usually
correlated. Moreover the unambiguous identification of metabolites or proteins can be
highly difficult, and the concentration and response ranges involved normally cover several
orders of magnitude. Besides, the majority of the detected variables are frequently irrelevant
for the outcome prediction [1-3] and so the predictive precision and accuracy of
discriminant models can be improved if uninformative variables are removed in advance
[4,5]. Furthermore, feature selection also provides simplified models of easier
interpretability in a subsequent statistical or biochemical data analysis.

Whereas a wide range of multivariate methods for supervised learning (i.e. pattern
recognition) is available, each with its own strengths and weaknesses, the most commonly
used multivariate classification technique is Partial Least Squares - Discriminant Analysis
(PLSDA) [4]. PLSDA is a multivariate PLS method that extracts a set of latent variables (LVs)
that explain the sources of variation in the X-block correlated to an y-vector that encodes the
class membership [1]. One of the key features of PLSDA is its applicability in situations in
which variables far outnumber samples, and correlation among variables exists [2,6]. In a
PLSDA model, the relation between the predictors X (N x J) and the response y (N x 1) can be

described as:
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¥ =Xb" + e (Equation 1)

where b (1 x J) is the vector of regression coefficients, e (N x 1) is the error vector (i.e.
residuals) and N and ] are the number of objects (e.g. MS or NMR spectra) and variables (e.g.
m/z features or chemical shifts), respectively.

In metabolomic and proteomic studies, results should be subjected to thorough statistical
and biological validation. Whereas the biological validation determines whether biomarkers
are involved in processes related to the stated difference between classes, the statistical
validation determines the performance of the biomarker and the probability of a chance
result [7]. There are two statistical validation approaches, namely external and cross-
validation. While external validation is considered the ‘gold standard’, cross-validation (CV)
can be seen as a sub-optimal approximation to external validation [7] that, in spite of its
limitations, still is very useful in case of a limited number of samples. Cross-validation is
used for both the selection of the complexity of PLS models and to obtain an estimation of
their predictive performance. During CV, a subset of objects from the data set is removed (i.e.
validation set) and a PLS model is calculated using the remaining objects (i.e. training set).
Then, the calculated model is used for the prediction of the y values of the validation set, and
averaging over several splits yields the CV estimation of the model performance. CV methods
are classified according to the procedure employed for the selection of the different subsets.
In spite of being widely employed, CV increases the risk of model over-fitting and it also
provides overoptimistic internal figures of merit in explorative and predictive PLS analysis
[9,10]. Double cross-validation (2CV), also known as cross model validation, is an alternative
CV strategy that circumvents these drawbacks providing external figures of merit [9-12]. In
2CV a subset of objects is set aside as a test set. The remaining set of objects are again split
into training and validation sets, and they are subjected to a standard CV procedure for the

selection of the number of latent variables [3]. Besides, non-parametric permutation tests
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based on random rearrangements of the elements of the y vector of a data set are useful for
determining the significance of a statistic [9,13] and its use in combination with 2CV has
been repeatedly proposed as a suitable approach to assess the statistical significance of
PLSDA figures of merit [2,3,9,10,14].

As aforementioned, dimensionality reduction methods are often employed to increase PLS
prediction accuracy. If variable selection is performed in advance on the entire data set, it
gives overly optimistic CV results. This apparent improvement, however, partly originates
from the susceptibility of variable selection towards chance correlations depending on both
the variable to sample ratio and the correlation structure of data [15-18].

Addressing the aforementioned concerns, a straightforward strategy based on permutation
testing and 2CV is proposed to grade the effect of chance correlations on PLSDA model
performance during variable selection. For this purpose, the number of misclassified
samples (NMC) and the discriminant Q? (dQ?) [19] performance statistics calculated using
real class labels were compared to a distribution of the same estimators obtained after class
randomization before and after variable selection. Simulated data sets, an experimental MS
data set and two variable selection procedures were used to demonstrate the potentials and

drawbacks of the approach.

2. Material and Methods

2.1 Software

Data analysis was run under Matlab 7.7.0 from Mathworks (Natick, USA, 2004) using in-
house written MATLAB functions and the PLS Toolbox 6.2 from Eigenvector Research Inc.
(Wenatchee, WA, USA). Bold capital letters represent matrices, bold italic lowercase

characters represent vectors, and italic uppercase letters represent scalars. Both simulated
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and experimental data sets are assembled in matrices X (/V x J), where rows (/) and columns

(J) correspond to samples and variables, respectively.

2.2 Data sets

Four ‘null’ data sets (Nzs0 (60 x 250), N540(60 x 540), Niooo (60 x 1000), and Nz000(60 x
2000)) were generated using the randn MATLAB function [20] and contained
pseudorandom values drawn from standard normal distributions (i.e. mean zero and
standard deviation one). The first 30 objects were classified as class A (Y=1) and the rest as
class B (Y=0).

Then, a set of simulated data sets (SIMUIN_5, SIMUIN_15 and SIMUIN_25) was calculated as
described by Centner et al. [21]: SIM (60 x V) was a simulated pure (noise free) data matrix
generated with an exact dimensionality of 3, only containing informative variables. The
SIMUI (60 x 540) data matrix resulted from the attachment of an uninformative variable
matrix UI (60 x (540-V)) to the SIM matrix. UI consisted of pseudorandom numbers drawn
from a standard normal distribution. SIMUIN is the sum of the SIMUI matrix and a noise
matrix N (60 x 540) containing pseudorandom numbers drawn from a normal distribution
with mean zero and standard deviation 0.025. The SIMUIN_5, SIMUIN_15 and SIMUIN_25
data sets corresponded to V=5, 15 and 25, respectively. For each SIM matrix, a y (60 x 1)
vector was calculated as y = 3-t1 + 2-t2 + 1-t3, where t, (a={1,2,3}), is the vector of scores of
the ath principal component. Class assignment of each simulated sample was carried out
according to the sign of its calculated y value (see Figure 1). A new y vector was generated
where each class A sample was assigned a value of zero and each class B sample a value of
one. The use of class labels (1/0) instead of the actual y values was selected to simulate real

situations where samples are typically clustered in two classes in spite of within-class
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differences among samples. Then, 20 randomly selected samples of each class were removed
from each data set for being used as external test sets.

An experimental data set was used to test the applicability of the approach. The employed
data set (Gaucher (40 x 590)) was obtained from the Biosystems Data Analysis Group

website (www.bdagroup.nl) and contains Surface Enhanced Laser Desorption lonization -

Time of Flight - Mass Spectrometry (SELDI-TOF-MS) data of 40 serum samples from 20
Gauchy patients and 20 healthy controls. Each sample spectrum consists of 590 m/z

variables between 1000 and 10000. Y values of 1 and 0 were assigned to the spectra

obtained from Gauchy and healthy patients, respectively. Background information on the
Gaucher data set can be found in a previous work [22] and on the aforementioned website.
PLS modelling

Prior to PLS model calculation, autoscaling was employed to equal the relative importance of
all variables. The y vector containing the class labels was mean centered. Scaling factors
were calculated from the calibration subsets. No outlier detection was performed and all
samples were used for variable selection and 2CV, employing a maximum of 5 PLS

components selected from dQ? values calculated by CV.

2.3 Variable selection procedures

The following variable selection procedures were considered:

Approach 1. Variance of the b regression vector (bc,-PLSDA)

This approach uses the set of PLSDA regression vectors obtained after M random K-fold
cross-validations (M=20 and K=4 in this work). The number of LVs included in a PLSDA
model was selected from dQ? values obtained after each K-fold CV. Then, the mean vector (b)
and the standard deviation vector (s;) of the regression coefficient vectors (b) were

calculated. Variables were selected as informative according to (:|E7),. |—d Sp;) = 0(=1,....,J)
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The value of d should be selected as a compromise between Type I and II errors. In this

work d=4 was used.

Approach 2. Uninformative Variable Elimination (UVE-PLSDA)

The second approach involved UVE-PLSDA [21]. In this procedure, the original data matrix is
augmented column-wise by a matrix containing normally distributed artificial random
variables of very small magnitude (e.g. 10° times lower than the real variables [21]). Then,
the standard deviation vector of the regression coefficients (s;) is obtained from the
variation of the PLS regression coefficients by leave-one-out CV. The obtained values are

used to calculate a reliability coefficient (¢;), which is an equivalent to the calculated t-value,

for each original variable according to Equation 2:

b .
J .
C; = Equation 2
J Std(bjjl ( q )

Different criteria have been proposed [9] to establish the cut-off level for classification of
real variables as informative using the reliability values of the artificial (uninformative)
variables (cartit;)- In this work, the UVE-R approach was employed where |(cartitj)| are ranked
and a cut-off level corresponding to a defined a-quantile [21,24] is selected. Due to random
generation of artificial variables, results found by UVE-PLSDA show certain variability as
real variables with ¢; values close to the cut-off level might be retained or not in the final
model depending on minor differences in carfj. Daszykowsky et al. [24] improved the
performance of UVE-PLSDA by using a Monte Carlo approach in which UVE-PLSDA was
repeated a number of times and in each run a randomly selected model set was used for
model construction and feature selection.

The UVE-PLSDA procedure followed in this work can be described in four steps:
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i. Matrix augmentation: The original data matrix X was augmented column-wise by an
artificial variable matrix R (N x 250) with random values drawn from a standard distribution
with mean zero and standard deviation 10-° [21].

ii. Calculation of PLSDA submodels: A series of N submodels for the augmented data matrix
was calculated by leave-one-out CV. Accordingly, for each submodel, (N-1) samples were
used to calculate an inner PLSDA model of complexities a={1,...,A}, which was subsequently
used for prediction of the y; value of the remaining sample. The procedure was repeated
until all samples were predicted once as validation sample. The PLSDA model complexity
was selected from dQ? values calculated using the predicted y values.

iii. Calculation of the reliability coefficient for each variable: The reliability coefficient was
calculated from the set of N regression vectors according to Equation 2.

iv. Cut-off selection and UVE: In this work, the a-quantile value of 99% was selected as cut-off
value for a pre-classification of real variables as informative. To reduce the variability due to
the use of random artificial variables during variable selection, the UVE-PLSDA process was
repeated a total of 1000 times. By doing this, a frequency (y) of pre-classification as
informative was obtained for each variable. As informative variables are expected to be
retained more frequently than uninformative variables, y=99% was used as a second
threshold value for variable discrimination.

The predictive performance of the PLSDA models after variable selection by both procedures
was estimated by 4-fold 2CV, as described elsewhere [9]. The random selection of 2CV
training + validation and test sample subsets was repeated M times (M=20 in this work) to
reduce the influence of the split on the results. Again, dQ? values calculated by leave-one-out
CV within each training set were used to optimize the number of LVs of each inner model.

Finally, average NMC and dQ? statistics were calculated from the obtained 2CV results.
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2.4 Permutation test
In order to estimate the statistical significance of figures of merit obtained after variable
selection, a permutation test was carried out to create a null distribution. Accordingly, the
evaluation of the PLSDA performance using the selected variables was repeated 2000 times
using randomly permuted class labels. P-values for the figures of merit were calculated
either empirically [3] or by tail approximation to a generalized pareto distribution (GPD)
[13].
In the empirical approach, the p-value was computed as the fraction of permuted statistics
that are at least as extreme as the test statistic obtained from the original data, as described
elsewhere [3]. As the minimum type-I risk after z iterations calculated this way is 1/z, this
empirical approximation becomes impractical when the calculation of each random statistic
is computing intensive. In the second approach the (right) tail of the distribution of
permutation values (i.e. x in Equation 3) using a maximum of 250 points is fitted to a
generalized Pareto distribution with the following cumulative distribution function:
F(x)=1—(1—kxa )¥* fork =0 (Equation 3)

This method is based on tail approximation and reduces the number of required

permutations to accurately provide small p-values [13]. Detailed descriptions of the method

the data pretreatment and fitting procedure can be found in literature [13]. After estimation
of both k and a parameters in Equation 3, the Anderson-Darling statistic (A%) was calculated
for the estimation of the goodness of fit of the data to a GPD [25]. If the test failed, the
smallest exceedance was eliminated and the GPD fit was tested again. It has been
demonstrated that this method provides accurate p-values with a reduced number of
permutations as compared to the standard empirical approach. This advantage is of special

importance when the number of permuted values exceeding the test statistic (f) is very low
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(f <10, in this work) and the permutation approach is computing intensive. Nonetheless, in

situations where the GPD fitting failed, the empirical p-value was used.

3. Results and discussion

3.1 Simulated data sets

First a study assessing the potential of the proposed approach to estimate the statistical
significance of chance correlations on the improvement of PLSDA models after variable
selection was performed using simulated data. Then the same approach was applied to the
Gaucher data set.

Null data sets

Since predictors and responses were randomly generated in the null data sets, only non-
statistically significant PLSDA models were expected before variable selection [2,3,9-11,15].
Accordingly, 2CV figures of merit (NMC and dQ?) obtained before variable selection showed
no class difference (e.g. NMC around 50% of the samples) for all four null data sets
independently of their size (see Table 1). Nonetheless, the higher the variables-to-samples
ratio, the higher the probability of finding a subset of variables with different distributions
between classes because of sheer coincidence [7, 15-19]. Consequently, after variable
selection the number of variables selected as informative increased and figures of merit of
the submodels improved with the numbers of variables in the original data set (see Table 1).

For example, whereas the NMC for the Null dataset with 250 variables is reduced from 22 to

6 or 13, for the Null dataset with 2000 variables, the NMC can be artificially reduced from 24

to 0 after variable selection. This effect could be clearly seen using the bc-PLSDA approach

where a correlation among the number of variables in the original dataset, the number of
retained variables and overoptimistic CV results were found. In spite of that, the

permutation test showed the lack of statistical significance of the PLSDA submodels,
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expressed by the calculated p-values for both NMC and dQ? obtained using real class labels
in comparison to those obtained from permutation testing, all giving p-values > 0.05.

This overoptimistic effect was further confirmed by results obtained for the simulated
external test sets: whereas using variables selected by both bc-PLSDA and UVE-PLSDA
approaches the number of misclassified samples employing cross-validation decreased
rapidly (see Table 1), the number of misclassified samples in the external validation sets

remained constant as shown in Table 2. For example, for the Null dataset (20 x 1000) the

NMC in the external validation set before and after variable selection remains constant

(equal to 11). Additionally, the number of selected variables for each null data set was close

to the mean value of the number of retained variables using randomly permuted class labels.
This can be appreciated from Figures 2a and 3a for a Null (40 x 540) data set. Likewise,
Figures 2b-c and 3b-c confirm that also NMC and dQ? values obtained for the same null data
set are close to the mean value obtained for randomly permutated class labels, using both
variable selection approaches.

In summary, results obtained from null data sets demonstrate that the evaluation of the
statistical significance of figures of merit obtained after variable selection can be used to
conclude whether there is a statistically significant difference between classes in the original
data set. Nonetheless, this procedure is computing intensive and alternative approaches can
also provide the same information faster with the same accuracy level [9].

SIMUIN data sets

Table 1 summarizes results obtained for the SIMUINS, SIMUIN15 and SIMUIN25 data sets
in which, while the variables-to-samples ratio was kept constant (540/40), the number of a

priori informative variables increased from 5/540 up to 25/540. Results showed that the

bey-PLSDA method retained percentages of a priori informative variables in the 53-60%

range, and NMC as well as dQ? values were substantially improved after variable selection.
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Moreover, as depicted in Figure 2 for the SIMUIN data sets, the number of variables retained
was higher than those kept using randomly permuted class labels. Besides, statistically
significant p-values were obtained for the figures of merit of the submodels thus indicating
that the hypothesis that figures of merit using real and random class labels were equal could
be rejected (&=0.05) and so, improvements were not exclusively due to existing chance
correlations in the original data set. The suitability of both variable selection methods and
the significance tests was also supported by lower NMC in the external validation sets after
variable selection, as summarized in Table 2.

Likewise, results obtained from UVE-PLSDA for data sets SIMUIN15 and SIMUIN25
provided improved PLSDA figures of merit as shown in Tables 1 and 2 concerning the NMC
and dQ? values obtained from 2CV as well as for the external validation set. Also results
depicted in Figure 3 are in good agreement with those obtained by bc-PLSDA showing the
same trends in the number of selected variables, NMC and dQ? for SIMUIN data sets.
Although the NMQ and dQ? values for SIMUIN5 employing UVE-PLSDA had slightly
improved after variable selection, indicating an improvement of submodel performance, p-
values obtained for both, NMC and dQ? (see Table 1) indicated that the results obtained after
variable selection were comparable to those due to chance correlations. This could also be
confirmed by the NMC in the external validation set, increasing from 6 to 10 after variable
selection. Indeed, whereas 3 out of 5 informative variables were selected using the bcy-
PLSDA approach, none of the those variables was retained by UVE-PLSDA. The observed
differences between results found after b.-PLSDA and UVE-PLSDA selection in case of
SIMUINS were likely due to the effect of a and y values on the set of retrieved UVE variables:
whereas low values increase the number of both informative and uninformative variables
retained, high thresholds may lead to a loss of useful information thus reducing the

predictive capabilities of PLS models calculated after variable elimination.
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Gaucher data set

The Gaucher (40 x 590) data set was obtained from a study focusing on the measurement of
the protein profiles of serum of symptopatic type I Gaucher patients (n=20) and controls
(n=20) [22]. A total of 52 and 47 variables, 11 in common, were retained in the final models
using be-PLSDA and UVE-PLSDA, respectively. Results of this study using the two
considered variable selection approaches provided p-values <0.05 for both dQ? and NMC as
it can be seen in Table 1. In Figures 2 and 3 it can be appreciated that the numbers of
selected variables, NMC and dQ? values are different from the mean values obtained from
permutation testing lying at the side of the random distributions as confirmed by the p-
values shown in Table 1. It is interesting that all 10 variables identified in a previous work
[22] as those with the largest contribution to the discrimination were included in both
variable subsets.

When comparing figures of merit before and after UVE-PLSDA variable selection, results
obtained where worse than it could have been expected. For example, the NMC after variable
selection for the SIMUIN_5 external test set were clearly worse than those found by using
bey-PLSDA. The same effect was observed for the Gaucher data set where variable selection
did not reduce the NMC.

Whereas the effect of chance correlations could not be eliminated (i.e. CV after variable
selection provided overoptimistic figures of merit as it can be seen comparing the NMCs
included in Tables 1 and 2), permutation testing provided a straightforward way to assess
up to which extent the observed improvements in the predictive properties of PLSDA
models after variable selection could be attributed to chance, and to compare different

variable selection methods or conditions.

4. Conclusions
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The elimination of variables irrelevant for classification is an important task that improves
the predictive capabilities of multivariate models and facilitates their interpretation. Still, if
the effect of chance correlations is unknown, variable selection must be performed in
combination with an assessment of the obtained PLSDA models. Using simulated data sets as
well as a real data set it could be shown that the inclusion of variable selection in the
statistical validation process provides an estimation of its statistical significance, being
useful when no external validation set is available. This procedure increases confidence in
the variable selection process, which might be relevant for biological interpretation and
development of further analysis methods (i.e. development of target methods) based on the
obtained results. Furthermore, in spite of being computing intensive, this approach can also

be useful to compare variable selection methods or conditions.
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Legends of Figures

Figure 1. Sample classification according to calculated y values of simulated data matrices.

Note: blue circles: class A samples; red circles: class B samples; dotted line: class threshold.

Figure 2. Histograms of the number of selected variables (a), misclassified (NMC) samples
(b) and discriminant Q? (c) in the simulated Null (40 x 540), SIMUIN and Gaucher data sets
after variable selection using permuted class labels and the bc-PLSDA approach. Colored

dots indicate values obtained using the original class labels.

Figure 3. Histograms of the number of selected variables (a), misclassified (NMC) samples
(b) and discriminant Q? (c) in the simulated Null (40 x 540), SIMUIN and Gaucher data sets
after variable selection using permuted class labels and the UVE-PLSDA approach. Colored

dots indicate values obtained using the original class labels.



409

410

411

412

413

414

415

416

417

Legends of Tables

Table 1. Figures of merit of PLSDA models established by 2CV and calculated for different
data sets before and after variable selection. Standard deviations were obtained from 4-fold

2CV results (see text for details).

Table 2. Number of misclassified (NMC) samples included in the test sets before and after

variable selection.



